1. Positive integers \(a < b \) are given. Prove that among every \(b \) consecutive positive integers there are two numbers whose product is divisible by \(ab \).

(S. Berlov)

2. Two polynomials

 \[
 f(x) = a_{100}x^{100} + a_{99}x^{99} + \ldots + a_1x + a_0
 \]

 and

 \[
 g(x) = b_{100}x^{100} + b_{99}x^{99} + \ldots + b_1x + b_0
 \]

 of degree 100 differ from each other by a permutation of coefficients. It is known that \(a_i \neq b_i \) for \(i = 0, 1, 2, \ldots, 100 \). Is it possible that \(f(x) \geq g(x) \) for all real \(x \)?

(A. Golovanov)

3. \(AA_1, BB_1, CC_1 \) are altitudes of an acute triangle \(ABC \). A circle passing through \(A_1 \) and \(B_1 \) touches the arc \(AB \) of its circumcircle at \(C_2 \). The points \(A_2, B_2 \) are defined similarly. Prove that the lines \(AA_2, BB_2, CC_2 \) are concurrent.

(R. Sakhipov)

4. Determine maximum real \(k \) such that there exist a set \(X \) and its subsets \(Y_1, Y_2, \ldots, Y_{31} \) satisfying the following conditions:

 (1) for every two elements of \(X \) there is an index \(i \) such that \(Y_i \) contains neither of these elements;

 (2) if any non-negative numbers \(\alpha_i \) are assigned to the subsets \(Y_i \) and \(\alpha_1 + \ldots + \alpha_{31} = 1 \) then there is an element \(x \in X \) such that the sum of \(\alpha_i \) corresponding to all the subsets \(Y_i \) that contain \(x \) is at least \(k \).

(I. Bogdanov, G. Chelnokov)

Second day

5. What minimum number of colours is sufficient to colour all positive real numbers so that every two numbers whose ratio is 4 or 8 have different colours?

(A. Golovanov)

6. Point \(D \) is chosen on the side \(AB \) of triangle \(ABC \). Point \(L \) inside the triangle \(ABC \) is such that \(BD = LD \) and \(\angle LAB = \angle LCA = \angle DCB \). It is known that \(\angle ALD + \angle ABC = 180^\circ \). Prove that \(\angle BLC = 90^\circ \).

(R. Sakhipov)

7. Several knights are arranged on an infinite chessboard. No square is attacked by more than one knight (in particular, a square occupied by a knight can be attacked by one knight but not by two). Sasha outlined a \(14 \times 16 \) rectangle. What maximum number of knights can this rectangle contain?

(S. Berlov)

8. Prove that there exists a positive \(c \) such that for every positive integer \(N \) among any \(N \) positive integers not exceeding \(2N \) there are two numbers whose greatest common divisor is greater than \(cN \).

(F. Petrov)